Package: opticskxi 1.2.0
opticskxi: OPTICS K-Xi Density-Based Clustering
Density-based clustering methods are well adapted to the clustering of high-dimensional data and enable the discovery of core groups of various shapes despite large amounts of noise. This package provides a novel density-based cluster extraction method, OPTICS k-Xi, and a framework to compare k-Xi models using distance-based metrics to investigate datasets with unknown number of clusters. The vignette first introduces density-based algorithms with simulated datasets, then presents and evaluates the k-Xi cluster extraction method. Finally, the models comparison framework is described and experimented on 2 genetic datasets to identify groups and their discriminating features. The k-Xi algorithm is a novel OPTICS cluster extraction method that specifies directly the number of clusters and does not require fine-tuning of the steepness parameter as the OPTICS Xi method. Combined with a framework that compares models with varying parameters, the OPTICS k-Xi method can identify groups in noisy datasets with unknown number of clusters. Results on summarized genetic data of 1,200 patients are in Charlon T. (2019) <doi:10.13097/archive-ouverte/unige:161795>.
Authors:
opticskxi_1.2.0.tar.gz
opticskxi_1.2.0.zip(r-4.5)opticskxi_1.2.0.zip(r-4.4)opticskxi_1.2.0.zip(r-4.3)
opticskxi_1.2.0.tgz(r-4.5-any)opticskxi_1.2.0.tgz(r-4.4-any)opticskxi_1.2.0.tgz(r-4.3-any)
opticskxi_1.2.0.tar.gz(r-4.5-noble)opticskxi_1.2.0.tar.gz(r-4.4-noble)
opticskxi_1.2.0.tgz(r-4.4-emscripten)opticskxi_1.2.0.tgz(r-4.3-emscripten)
opticskxi.pdf |opticskxi.html✨
opticskxi/json (API)
NEWS
# Install 'opticskxi' in R: |
install.packages('opticskxi', repos = c('https://thomaschln.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://gitlab.com/thomaschln/opticskxi
- crohn - Crohn's disease data
- hla - The HLA data
- m_psych_embeds - A dataset containing the embeddings matrix of psychological related words
- multishapes - A dataset containing clusters of multiple shapes
Last updated 8 hours agofrom:6f71892d4c. Checks:1 OK, 7 ERROR. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 20 2025 |
R-4.5-win | ERROR | Feb 20 2025 |
R-4.5-mac | ERROR | Feb 20 2025 |
R-4.5-linux | ERROR | Feb 20 2025 |
R-4.4-win | ERROR | Feb 20 2025 |
R-4.4-mac | ERROR | Feb 20 2025 |
R-4.3-win | ERROR | Feb 20 2025 |
R-4.3-mac | ERROR | Feb 20 2025 |
Exports:%<>%%>%%$%contingency_tablecosine_simidist_matrixensemble_metricsensemble_modelsfortify_dimredfortify_icafortify_pcaget_best_kxiggpairsggplot_kxi_metricsggplot_opticsgtable_kxi_profilesnice_palettenorm_inprodopticskxiopticskxi_pipelineprint_vignette_tableresiduals_tablestddev_mean
Dependencies:clicolorspacedata.tabledigestfansifarverfloatggplot2gluegtableisobandlabelinglatticelgrlifecyclemagrittrMASSMatrixMatrixExtramgcvmlapimunsellnlmepillarpkgconfigR6RColorBrewerRcppRcppArmadilloRhpcBLASctlrlangrsparsescalesstringitext2vectibbleutf8vctrsviridisLitewithr
Ensemble Metrics And Models For Density-Based Clustering
Rendered fromensemble_metrics.Rnw
usingutils::Sweave
on Feb 20 2025.Last update: 2025-02-20
Started: 2025-01-21
OPTICS K-Xi Density-Based Clustering
Rendered fromopticskxi.Rnw
usingutils::Sweave
on Feb 20 2025.Last update: 2025-01-21
Started: 2019-07-15