Package: opticskxi 1.2.1

opticskxi: OPTICS K-Xi Density-Based Clustering

Density-based clustering methods are well adapted to the clustering of high-dimensional data and enable the discovery of core groups of various shapes despite large amounts of noise. This package provides a novel density-based cluster extraction method, OPTICS k-Xi, and a framework to compare k-Xi models using distance-based metrics to investigate datasets with unknown number of clusters. The vignette first introduces density-based algorithms with simulated datasets, then presents and evaluates the k-Xi cluster extraction method. Finally, the models comparison framework is described and experimented on 2 genetic datasets to identify groups and their discriminating features. The k-Xi algorithm is a novel OPTICS cluster extraction method that specifies directly the number of clusters and does not require fine-tuning of the steepness parameter as the OPTICS Xi method. Combined with a framework that compares models with varying parameters, the OPTICS k-Xi method can identify groups in noisy datasets with unknown number of clusters. Results on summarized genetic data of 1,200 patients are in Charlon T. (2019) <doi:10.13097/archive-ouverte/unige:161795>. A short video tutorial can be found at <https://www.youtube.com/watch?v=P2XAjqI5Lc4/>.

Authors:Thomas Charlon [aut, cre]

opticskxi_1.2.1.tar.gz
opticskxi_1.2.1.zip(r-4.5)opticskxi_1.2.1.zip(r-4.4)opticskxi_1.2.1.zip(r-4.3)
opticskxi_1.2.1.tgz(r-4.5-any)opticskxi_1.2.1.tgz(r-4.4-any)opticskxi_1.2.1.tgz(r-4.3-any)
opticskxi_1.2.1.tar.gz(r-4.5-noble)opticskxi_1.2.1.tar.gz(r-4.4-noble)
opticskxi_1.2.1.tgz(r-4.4-emscripten)opticskxi_1.2.1.tgz(r-4.3-emscripten)
opticskxi.pdf |opticskxi.html
opticskxi/json (API)
NEWS

# Install 'opticskxi' in R:
install.packages('opticskxi', repos = c('https://thomaschln.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://gitlab.com/thomaschln/opticskxi

Datasets:
  • crohn - Crohn's disease data
  • hla - The HLA data
  • m_psych_embeds - A dataset containing the embeddings matrix of psychological related words
  • multishapes - A dataset containing clusters of multiple shapes

On CRAN:

Conda:

4.85 score 1 scripts 426 downloads 24 exports 28 dependencies

Last updated 17 hours agofrom:39c1274458. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 22 2025
R-4.5-winOKMar 22 2025
R-4.5-macOKMar 22 2025
R-4.5-linuxOKMar 22 2025
R-4.4-winOKMar 22 2025
R-4.4-macOKMar 22 2025
R-4.4-linuxOKMar 22 2025
R-4.3-winOKMar 22 2025
R-4.3-macOKMar 22 2025

Exports:%<>%%>%%$%contingency_tablecosine_simidist_matrixensemble_metricsensemble_modelsfortify_dimredfortify_icafortify_pcaget_best_kxiggpairsggplot_kxi_metricsggplot_opticsgtable_kxi_profilesnice_palettenorm_inprodnormalizeopticskxiopticskxi_pipelineprint_vignette_tableresiduals_tablestddev_mean

Dependencies:clicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr

Ensemble Metrics And Models For Density-Based Clustering

Rendered fromensemble_metrics.Rnwusingutils::Sweaveon Mar 22 2025.

Last update: 2025-02-26
Started: 2025-01-21

OPTICS K-Xi Density-Based Clustering

Rendered fromopticskxi.Rnwusingutils::Sweaveon Mar 22 2025.

Last update: 2025-03-22
Started: 2019-07-15