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Abstract

Density-based clustering methods are well adapted to the clustering of high-dimensional
data and enable the discovery of core groups of various shapes despite large amounts of
noise. The opticskxi R package provides a novel density-based cluster extraction method,
OPTICS k-Xi, and a framework to compare k-Xi models using distance-based metrics
to investigate datasets with unknown number of clusters. This article first introduces
density-based algorithms with simulated datasets, then presents and evaluates the k-Xi
cluster extraction method. Finally, the models comparison framework is described and
experimented on 2 genetic datasets to identify groups and their discriminating features.
The k-Xi algorithm is a novel OPTICS cluster extraction method that specifies directly
the number of clusters and does not require fine-tuning of the steepness parameter as the
OPTICS Xi method. Combined with a framework that compares models with varying
parameters, the OPTICS k-Xi method can identify groups in noisy datasets with unknown
number of clusters.
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1. Introduction
Density-based clustering methods detect groups of similar observations based on their distance
to a given number of their nearest neighbors. In contrast with other clustering methods as k-
means or Gaussian mixture models, they do not expect the observed data to follow Gaussian
or other parametric distributions and they can thus detect groups of various shapes.
In this article, density-based clustering algorithms are first presented on simulated datasets
using the dbscan package (Hahsler and Piekenbrock 2016), and limitations due to clusters of
varying densities and fine-tuning of parameters are described. A novel cluster extraction algo-
rithm, OPTICS k-Xi, is then presented and evaluated on the datasets. Finally, a framework
to compare multiple k-Xi models with varying parameters is detailed and experimented on 2
genetic datasets of Schizophrenia and Crohn’s disease patients, to enable further investigation
of the best models and identify genetic signatures of core groups.

1.1. DBSCAN
DBSCAN (Ester, Kriegel, Sander, Xu et al. 1996) is a well-known density-based clustering
algorithm with 3 parameters: a distance matrix, a number of neighbors, and a reachability
distance threshold.
The algorithm first searches for core points in the distance matrix, i.e. points that have
distances from at least a given number of points, the number of neighbors, smaller than the
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reachability threshold. If one is found, the core point and its neighbors form a cluster, and if
additional core points are found within its neighbors, the cluster is expanded to also include
their neighbors, iteratively until no core points are discovered in the neighbors. Additional
clusters are then formed similarly for each core point not yet assigned and finally remaining
non-assigned points are considered noise.
In the dbscan package, by default the euclidean distance is used, with 5 neighbors, and
the distance threshold must be fine-tuned. In these simulated datasets from the factoextra
and dbscan R packages, points are organized by various shapes along with some noise, on
2 variables. With specific distance thresholds, DBSCAN successfully detects the shapes and
the noise (Figure 1).

R> library('opticskxi')
R> data('multishapes')
R> dbscan_shapes <- dbscan::dbscan(multishapes[1:2], eps = 0.15)
R> gg_shapes <- cbind(multishapes[1:2], Clusters = dbscan_shapes$cluster) %>%
+ ggpairs(group = 'Clusters')
R> data('DS3', package = 'dbscan')
R> dbscan_ds3 <- dbscan::dbscan(DS3, minPts = 25, eps = 12)
R> gg_ds3 <- cbind(DS3, Clusters = dbscan_ds3$cluster) %>%
+ ggpairs(group = 'Clusters')
R> cowplot::plot_grid(gg_shapes, gg_ds3, nrow = 2,
+ labels = c('(a)', '(b)'), label_x = 0.9)

However, DBSCAN uses a fixed distance threshold and thus can not detect clusters of varying
densities. In this simulated Gaussian data with 2 large clusters and 2 smaller, more dense,
clusters, DBSCAN detects either the pair of large or small clusters, depending on the distance
threshold, but can not detect all 4 clusters (Figure 2).

R> n <- 1e3
R> set.seed(0)
R> multi_gauss <- cbind.data.frame(
+ x = c(rnorm(n / 2, -3), rnorm(n / 4, 3), rnorm(n / 4, 3, .2)),
+ y = c(rnorm(n * .75), rnorm(n / 8, 1, .2), rnorm(n / 8, -1, .2)))
R> dbscan_gauss <- dbscan::dbscan(multi_gauss, minPts = 30, eps = .5)
R> gg_mgauss <- cbind(multi_gauss, Clusters = dbscan_gauss$cluster) %>%
+ ggpairs(group = 'Clusters')
R> gg_mgauss_small <- dbscan::dbscan(multi_gauss, minPts = 30, eps = .2) %$%
+ cbind(multi_gauss, Clusters = cluster) %>% ggpairs(group = 'Clusters')
R> cowplot::plot_grid(gg_mgauss, gg_mgauss_small, nrow = 2,
+ labels = c('(a)', '(b)'), label_x = .9)

1.2. OPTICS
OPTICS (Ankerst, Breunig, Kriegel, and Sander 1999) is another density-based algorithm
that produces an ordering and a distance profile of observations, similar to a tree-like den-
dogram, and enables the detection of clusters of varying densities with the cluster extraction
method OPTICS Xi (Ankerst et al. 1999).
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Figure 1: DBSCAN clusterings of various shapes and noise (cluster 0). (a): Multishapes
dataset. (b): DS3 dataset.

OPTICS uses at least 2 parameters, a distance matrix and a number of neighbors, and
produces a distance profile that reveals the density structure of the dataset and can be used
to extract clusters. The algorithm iteratively explores point neighborhoods in the order of
lowest to highest core distance, i.e. the maximum distance from a point to a given number
of its nearest neighbors, and returns the orders and the reachability distances of successive
points, i.e. the maximum between the core distance of the point and the distance from it to
the previous point. Low reachability-distances regions, or valleys, thus represent clusters and
are separated by peaks, i.e. points with high reachability distances.
OPTICS can be used to fine-tune the distance threshold in DBSCAN, as the DBSCAN method
is equivalent to a horizontal threshold on the reachability plot.

1.3. OPTICS Xi

To extract clusters of varying densities from OPTICS profiles, the OPTICS Xi (Ankerst et al.
1999) algorithm uses a steepness threshold. The differences between reachability distances of
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Figure 2: DBSCAN clustering of hierarchical Gaussian clusters. (a): Detection of large
clusters. (b): Detection of small clusters.

successive points are first computed. Then, for each absolute distance difference above the
given threshold, all adjacent points with a smaller reachability distance form a cluster.
Two cases are distinguished when forming a cluster, steep down or steep up areas, in which the
reachability distance differences that delimit the cluster are negative or positive, i.e. when the
first observation has a reachability higher or lower than the second observation, respectively.

• In a steep down area, both observations that produce the large distance difference are
part of the cluster, and all successive points with a reachability distance smaller than
the first observation, are part of the cluster.

• In a steep up area, only the first observation is part of the cluster, and all previous
points with a reachability distance smaller than the second observation, and the adjacent
previous point, are part of the cluster.

OPTICS Xi thus detects clusters of varying densities, possibly hierarchical, although the
Xi steepness parameter must be fine-tuned. In the simulated hierarchical Gaussian data,
OPTICS Xi successfully detects both the large and small clusters with Xi = 0.03 (Figure 3).

R> optics_gauss <- dbscan::optics(multi_gauss, minPts = 30)
R> xi_gauss <- dbscan::extractXi(optics_gauss, xi = 0.03)
R> ggplot_optics(optics_gauss, groups = xi_gauss$cluster)
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Figure 3: OPTICS profile of the hierarchical Gaussian clusters, colored by OPTICS Xi clus-
tering.

2. OPTICS k-Xi
The opticskxi package provides a variant OPTICS cluster extraction algorithm, k-Xi, that
specifies directly the number of clusters and does not require fine-tuning a parameter. Instead
of using a fixed distance difference threshold OPTICS Xi, the k-Xi algorithm iteratively
investigates the largest differences until at the given number of clusters are defined.

2.1. Algorithm

For each successive largest difference, OPTICS k-Xi will attempt to form a cluster of all
adjacent points with a smaller reachability-distance, distinguishing steep down and up areas
similarly as OPTICS Xi (detailed above). If the newly formed cluster contains less observa-
tions than the pts parameter, or if it reduces the size of a previously formed cluster below
the pts parameter, the new cluster is discarded and the next largest difference is considered.
The algorithm then stops when the number of clusters has reached the n_xi parameter, or
when the number of largest differences considered has reached the max_loop threshold, by
default 50. The pts parameter is set by default to the minPts parameter used to compute the
OPTICS profile, and avoids introducing small clusters due to nearby large distance differences.

2.2. Results

In the hierarchical Gaussian data, OPTICS k-Xi successfully detects the large and small
clusters (Figure 4).

R> kxi_gauss <- opticskxi(optics_gauss, n_xi = 4, pts = 100)
R> ggplot_optics(optics_gauss, groups = kxi_gauss)

In the multishapes and the DS3 datasets, OPTICS k-Xi also successfully detects the shapes,
but the noise is included in the largest cluster (Figure 5).

R> gg_shapes_optics <- dbscan::optics(multishapes[1:2]) %>%
+ ggplot_optics(groups = opticskxi(., n_xi = 5, pts = 30))
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Figure 4: OPTICS profile of the hierarchical Gaussian clusters, colored by OPTICS k-Xi
clustering.

R> gg_ds3_optics <- dbscan::optics(DS3, minPts = 25) %>%
+ ggplot_optics(groups = opticskxi(., n_xi = 6, pts = 100))
R> cowplot::plot_grid(gg_shapes_optics, gg_ds3_optics, nrow = 2,
+ labels = c('(a)', '(b)'), label_x = .9)

3. Models comparisons by distance-based metrics
To explore complex datasets where clusters are not well defined, k-Xi models with various
distances, number of points, and number of clusters may be investigated and compared.
Furthermore, in datasets with many variables, dimension reduction methods as principal
component analysis (PCA) or independent component analysis (ICA) may be required prior
to the clustering to summarize information.
The opticskxi package provides a framework to efficiently compare multiple k-Xi models with
varying parameters and to extract and visualize the models with highest metrics, to enable
further investigation of the clusters of the best models.

3.1. Framework

The main function, opticskxi_pipeline, inputs a data frame of k-Xi clustering parameters
and returns corresponding clustering results and their distance-based metrics.
Parameters are specified using a data frame with the following columns:

• dim_red: Optional dimension reduction: ’PCA’, ’ICA’ (using the fastICA package (Mar-
chini, Heaton, and Ripley 2017))

• n_dim_red: Optional number of components of the dimension reduction

• dist: Distance, one of the 11 distances from the amap package (Lucas 2019)

• pts: Number of points for OPTICS (minPts) and k-Xi

• n_xi: Number of clusters for k-Xi
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Figure 5: OPTICS profiles colored by OPTICS k-Xi clusterings. (a): Multishapes dataset.
(b): DS3 dataset.

To efficiently compute multiple k-Xi models with varying dimension reductions and parame-
ters, the framework proceeds step-by-step, by first computing the unique dimension reduction
matrices required, then unique distance matrices, unique OPTICS models, and finally k-Xi
cluster extractions.
Distance-based metrics are then measured for each model using the fpc package (Hennig
2019). The following metrics are stored: avg.silwidth, bw.ratio, ch, pearsongamma, dunn,
dunn2, entropy, widestgap, sindex.
Finally, clusters and metrics are binded to the input parameter data frame that defines the
unique parameters of each model, in the columns clusters and metrics.
Three functions can be used directly on the results data frame to extract specific models and
investigate the distance profiles and the clusterings:

• get_best_kxi: Subset the data frame by specifying a metric and one or more ranks, in
decreasing order of the metric.

• ggplot_kxi_metrics: Plot metrics of the top ranked k-Xi models, by default the 8
models with highest average silhouette width. Additional metrics can be displayed next
to the one used for ranking, by default the between-within ratio.

• gtable_kxi_profiles: Plot OPTICS profiles of the top ranked k-Xi models, by default
the 4 models with highest average silhouette width.
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3.2. Schizophrenia patients and controls

In this dataset from the gap R package (Zhao, colleagues with inputs from Kurt Hornik, and
Ripley 2015), 6 alleles from the chromosome 6 gene HLA were measured from 94 schizophrenia
patients and 177 controls.
All combinations of the following OPTICS k-Xi parameters are computed:

• Distance: Manhattan, Euclidean, absolute Pearson, absolute correlation

• Number of clusters: 3 to 5

• Number of points: 20, 30, 40

The 8 best models by average silhouette width are first visualized and reveal that all use
Manhattan or Euclidean distances and half use a pts parameter of 20 (Figure 6).

R> data('hla')
R> m_hla <- hla[-c(1:2)] %>% scale
R> df_params_hla <- expand.grid(n_xi = 3:5, pts = c(20, 30, 40),
+ dist = c('manhattan', 'euclidean', 'abscorrelation', 'abspearson'))
R> df_kxi_hla <- opticskxi_pipeline(m_hla, df_params_hla)
R> ggplot_kxi_metrics(df_kxi_hla, n = 8)

Avg. silhouette width Between−within ratio
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Figure 6: Distance-based metrics of the 8 best k-Xi clusterings of the HLA dataset, ranked
by decreasing average silhouette width. All the models use Manhattan or Euclidean distances
and half use a pts parameter of 20.

The OPTICS profiles of the 4 best models are then visualized and reveal that the two best
models only differ by their number of clusters, 3 or 4, and that the third and fourth models
have hierarchical clusters (Figure 7).
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Figure 7: OPTICS profiles of the 4 best k-Xi clusterings of the HLA dataset, ranked by
decreasing average silhouette width. The two best models only differ by their number of
clusters, 3 or 4, and the third and fourth models have hierarchical clusters.

The second best model is then selected to investigate the model with 4 clusters. To assess if
patients are significantly enriched in each group, standardized Pearson residuals are computed
using chisq.test. One disease is enriched or depleted in one group if the residual is above
or below 2, respectively (Friendly 1994).
Results show cluster 4 is enriched in Schizophrenia patients (residual = 3.98): 58% of in-
dividuals are patients, although the distribution in the complete dataset is 34%; and that
cluster 2 is enriched in controls (residual = 2.45) (Table 1).

R> best_kxi_hla <- get_best_kxi(df_kxi_hla, rank = 2)
R> clusters_hla <- best_kxi_hla$clusters
R> hla$id %<>% `levels<-`(c('Controls', 'Sch. patients'))
R> residuals_table(clusters_hla, hla$id) %>% print_table('HLA')

The groups are finally visualized using PCA dimension reduction, and the contributions of
variables are displayed to identify the contributions of the genetic markers. On PCA, the
genetic markers most discriminating cluster 4 from other observations are DQB.a2, DQR.a2,
and DQA.a2 (Figure 8).
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Controls Sch. patients Total Residuals: Controls Residuals: Sch. patients

1 56 27 83 1.22 -1.22
2 19 3 22 2.45 -2.45
3 23 9 32 1.19 -1.19
4 24 34 58 -3.98 3.98
NA 55 21 76 NA NA

Total 177 94 271 NA NA

Table 1: Contingency table of disease status and k-Xi clustering of the HLA dataset, with
standardized Pearson residuals.

R> fortify_pca(m_hla, sup_vars = data.frame(Clusters = clusters_hla)) %>%
+ ggpairs('Clusters', ellipses = TRUE, variables = TRUE)
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Figure 8: PCA of the HLA dataset colored by k-Xi clustering with 95% confidence ellipses.

3.3. Crohn’s disease patients and relatives

In this other dataset from the gap package (Zhao et al. 2015), 212 single nucleotide polymor-
phisms (SNPs) from chromosome 5 (5q31) were measured from 129 Crohn’s disease patients
and their 2 parents.
Since the number of variables is high, dimension reduction methods are applied to the clus-
tering. All combinations of the following OPTICS k-Xi parameters are computed:

• Dimension reduction: PCA, ICA

• Number of dimension reduction components: 4, 6, 8
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• Distance: Euclidean, absolute Pearson, absolute correlation

• Number of clusters: 3 to 5

• Number of points: 30, 40, 50

The 8 best models by average silhouette width mostly use the Absolute Pearson or Absolute
Correlation distances and 3 clusters (Figure 9).

R> data('crohn')
R> m_crohn <- crohn[-c(1:6)] %>% scale
R> df_params_crohn <- expand.grid(n_xi = 3:5, dim_red = c('PCA', 'ICA'),
+ dist = c('euclidean', 'abscorrelation', 'abspearson'),
+ pts = c(30, 40, 50), n_dimred_comp = c(4, 6, 8))
R> df_kxi_crohn <- opticskxi_pipeline(m_crohn, df_params_crohn)
R> ggplot_kxi_metrics(df_kxi_crohn)

Avg. silhouette width Between−within ratio
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Figure 9: Distance-based metrics of the 8 best k-Xi clusterings of the Crohn dataset, ranked
by decreasing average silhouette width.

The OPTICS profiles of the 4 best models reveal that all have hierarchical clusters (Figure 10).

R> gtable_kxi_profiles(df_kxi_crohn) %>% plot

In the best model, cluster 2 is enriched in Crohn’s disease patients (residual = 3.73): 46% of
individuals are patients, although only 37% in the complete dataset; and cluster 3 is enriched
in controls (residual = 3.05) (Table 2).

R> best_kxi_crohn <- get_best_kxi(df_kxi_crohn, rank = 1)
R> clusters_crohn <- best_kxi_crohn$clusters
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Figure 10: OPTICS profiles of the 4 best k-Xi clusterings of the Crohn dataset, ranked by
decreasing average silhouette width.

R> crohn$crohn %<>% factor %>% `levels<-`(c('Controls', 'Crohn patients'))
R> residuals_table(clusters_crohn, crohn$crohn) %>% print_table('Crohn')

The groups are then visualized using the corresponding dimension reduction, ICA with 4
components, which reveals the hierarchical structure of clusters 1 and 2, discriminated from
cluster 3 mostly by the second and third components (Figure 11).

R> ica <- fortify_ica(m_crohn, n.comp = 4,
+ sup_vars = data.frame(Clusters = clusters_crohn))
R> ggpairs(ica, 'Clusters', axes = 1:4, ellipses = TRUE, level = .75) %>%
+ plot

The dimension reduction visualization is then focused on the second and third components
to reveal the variables with strong contributions (Figure 12).

R> ggpairs(ica, 'Clusters', axes = 2:3, ellipses = TRUE, variables = TRUE,
+ n_vars = 3)

4. Conclusions
The OPTICS k-Xi algorithm attempts directly to define a given number of clusters and does
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Controls Crohn patients Total Residuals: Controls Residuals: Crohn patients

1 45 17 62 1.08 -1.08
2 51 44 95 -3.73 3.73
3 49 10 59 3.05 -3.05
NA 98 73 171 NA NA
Total 243 144 387 NA NA

Table 2: Contingency table of disease status and k-Xi clustering of the Crohn dataset, with
standardized Pearson residuals.

not require fine-tuning of a steepness parameter as OPTICS Xi. Combined with a framework
to compare models with varying parameters, the k-Xi method can identify core groups in
noisy datasets with an unknown number of clusters.
Recent density-based algorithms as HDBSCAN (Campello, Moulavi, and Sander 2013) also
enable to detect clusters of varying densities and to specify directly the number of clusters
to define. In contrast with OPTICS k-XI which iteratively attempts to define clusters until
the specified number is reached, HDBSCAN can provide any given number of clusters, based
on a hierarchical structure. Future work may thus include comparing OPTICS k-Xi with
more recent density-based algorithms as HDBSCAN, and expanding the models comparison
framework to include other density-based algorithms.
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Figure 11: ICA with 4 axes of the Crohn dataset, colored by k-Xi clustering with 75%
confidence ellipses. Clusters 1 and 2 are hierarchical and are discriminated from cluster 3
mostly by the second and third components.
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