Package: nlpembeds 1.0.0

nlpembeds: Natural Language Processing Embeddings

Provides efficient methods to compute co-occurrence matrices, pointwise mutual information (PMI) and singular value decomposition (SVD). In the biomedical and clinical settings, one challenge is the huge size of databases, e.g. when analyzing data of millions of patients over tens of years. To address this, this package provides functions to efficiently compute monthly co-occurrence matrices, which is the computational bottleneck of the analysis, by using the 'RcppAlgos' package and sparse matrices. Furthermore, the functions can be called on 'SQL' databases, enabling the computation of co-occurrence matrices of tens of gigabytes of data, representing millions of patients over tens of years. Partly based on Hong C. (2021) <doi:10.1038/s41746-021-00519-z>.

Authors:Thomas Charlon [aut, cre], Doudou Zhou [ctb], CELEHS [aut]

nlpembeds_1.0.0.tar.gz
nlpembeds_1.0.0.zip(r-4.5)nlpembeds_1.0.0.zip(r-4.4)nlpembeds_1.0.0.zip(r-4.3)
nlpembeds_1.0.0.tgz(r-4.5-any)nlpembeds_1.0.0.tgz(r-4.4-any)nlpembeds_1.0.0.tgz(r-4.3-any)
nlpembeds_1.0.0.tar.gz(r-4.5-noble)nlpembeds_1.0.0.tar.gz(r-4.4-noble)
nlpembeds_1.0.0.tgz(r-4.4-emscripten)nlpembeds_1.0.0.tgz(r-4.3-emscripten)
nlpembeds.pdf |nlpembeds.html
nlpembeds/json (API)

# Install 'nlpembeds' in R:
install.packages('nlpembeds', repos = c('https://thomaschln.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://gitlab.com/thomaschln/nlpembeds

On CRAN:

4.98 score 193 downloads 9 exports 28 dependencies

Last updated 1 days agofrom:25f90ce98b. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 20 2025
R-4.5-winOKFeb 20 2025
R-4.5-macOKFeb 20 2025
R-4.5-linuxOKFeb 20 2025
R-4.4-winOKFeb 20 2025
R-4.4-macOKFeb 20 2025
R-4.3-winOKFeb 20 2025
R-4.3-macOKFeb 20 2025

Exports:%<>%%>%%$%build_df_coocbuild_spm_cooc_symget_pmiget_svdspm_to_dfsql_cooc

Dependencies:bitbit64blobcachemclicpp11data.tableDBIfastmapgluegmplatticelifecyclemagrittrMatrixmemoisepkgconfigplogrplyrRcppRcppAlgosreshape2rlangRSQLitersvdstringistringrvctrs

Co-occurrence Matrices and PMI-SVD Embeddings

Rendered fromcooc_pmi_svd.Rmdusingknitr::rmarkdownon Feb 20 2025.

Last update: 2025-02-02
Started: 2025-02-02